Math Pill #2: Square Roots
Simplifying radicals is strangely satisfying.
I’m helping my son with mathematics, and I have to re-learn it, but this is fun. Hence, I’m hoping to start a series of articles.
WARN: This article is using Mathjax to render math expressions. In case you’re using a feed reader, you might want to load this article in the browser with JavaScript enabled.
Problem statement #
Given \(\begin{align*} A &= \sqrt{4 + \sqrt{11} + \sqrt{23 - 2\sqrt{132}}} \\ B &= \sqrt{\sqrt{97 + 56\sqrt{3}}} \end{align*}\)
Show that: \(\frac{B^2 - 4A}{B - A} \in \mathbb{N}.\)
Solution #
Starting with:
\[B = \sqrt{\sqrt{97 + 56\sqrt{3}}}\]Often such sums can be rewritten like this:
\[97 + 56\sqrt{3} = (\sqrt{a} + \sqrt{b})^2\]We observe the formula:
\[(\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab}\]Therefore, we end up with the following system of equations:
\[\begin{cases} a + b = 97 \\ ab = 28^2 \cdot 3 \end{cases}\]The solutions may or may not jump at you, but there’s a little Vieta’s formula that can help — we can find a
and b
as being the solutions to this quadratic equation:
Solving that:
\[\begin{align*} \Delta &= 97^2 - 4*2352 \\ &= 9409 - 9408 \\ &= 1 \\ x_1 &= a = \frac{97 + \sqrt{1}}{2} = 49 \\ x_2 &= b = \frac{97 - \sqrt{1}}{2} = 48 \end{align*}\]Threfore:
\[\begin{align*} 97 + 56\sqrt{3} &= (\sqrt{49} + \sqrt{48})^2 \\ &= (7 + 4\sqrt{3})^2 \end{align*}\]Going back to our original value, we rewrite it:
\[\begin{align*} B &= \sqrt{\sqrt{97 + 56\sqrt{3}}} \\ &= \sqrt{\sqrt{(7 + 4\sqrt{3})^2}} \\ &= \sqrt{7 + 4\sqrt{3}} \end{align*}\]We still have a square of a sum, but this time we can spot the $(a + b)^2$ formula easily:
\[\begin{align*} B &= \sqrt{7 + 4\sqrt{3}} \\ &= \sqrt{2^2 + 2 * 2\sqrt{3} + \sqrt{3}^2} \\ &= \sqrt{(2 + \sqrt{3})^2} \\ &= 2 + \sqrt{3} \end{align*}\]Next, for simplifying A, we’ll focus on rewriting this:
\[23 - 2\sqrt{132} = (\sqrt{a} - \sqrt{b})^2\]Same trick applies, so we’re dealing with this system:
\[\begin{cases} a + b = 23 \\ ab = 132 \end{cases}\]Which will have solutions generated by this quadratic equation:
\[x^2 - 23x + 132 = 0\]Solving it:
\[\begin{align*} \Delta &= 23^2 - 4 * 132 = 529 - 528 = 1 \\ x_1 &= a = \frac{23 + 1}{2} = \frac{24}{2} = 12 \\ x_2 &= b = \frac{23 - 1}{2} = \frac{22}{2} = 11 \end{align*}\]Therefore our sum can be rewritten as (we remember that we have a minus sign though 🙂):
\[\begin{align*} 23 - 2\sqrt{132} &= (\sqrt{12} - \sqrt{11})^2 \\ &= (2\sqrt{3} - \sqrt{11})^2 \end{align*}\]We can now rewrite our A:
\[\begin{align*} A &= \sqrt{4 + \sqrt{11} + \sqrt{23 - 2\sqrt{132}}} \\ &= \sqrt{4 + \sqrt{11} + \sqrt{(2\sqrt{3} - \sqrt{11})^2}} \\ &= \sqrt{4 + \sqrt{11} + 2\sqrt{3} - \sqrt{11}} \\ &= \sqrt{4 + 2\sqrt{3}} \\ &= \sqrt{1^2 + 2\sqrt{3} + \sqrt{3}^2} \\ &= \sqrt{(1 + \sqrt{3})^2} \\ &= 1 + \sqrt{3} \end{align*}\]And finally:
\[\begin{align*} \frac{B^2 - 4A}{B - A} &= \frac{(2 + \sqrt{3})^2 - 4(1 + \sqrt{3})}{(2 + \sqrt{3}) - (1 + \sqrt{3})} \\ &= \frac{4 + 4\sqrt{3} + 3 - 4 - 4\sqrt{3}}{1} \\ &= 3 \in \mathbb{N} \end{align*}\]