
Functional Programming

Alexandru Nedelcu & Mihai Simu

In SCALA @ING Bank

November 2021

Vesper @ ING

1.Romania’s payment engine
With ambitions for more

2.In production
And heavily refactored 😛

3.We have superpowers😎

2

Distributed / remote team

Vesper @ ING

Distributed / remote team
Scala / JVM

Vesper @ ING

Distributed / remote team
Scala / JVM
Functional programming

Vesper @ ING

Distributed / remote team
Scala / JVM
Functional programming
Akka

Streams
Cluster
Event Sourcing

Vesper @ ING

Distributed / remote team
Scala / JVM
Functional programming
Akka

Streams
Cluster
Event Sourcing

Reusable components
Resiliency, consistency, horizontal scalability

Vesper @ ING

Functional

Programming (FP)

Functional Programming

f: X → Y, ∀ x1, x2 ∈ X
f(x1) ≠ f(x2) => x1 ≠ x2

Functional Programming

f: X → Y, ∀ x1, x2 ∈ X
f(x1) ≠ f(x2) => x1 ≠ x2

Functional Programming

• Programming with math functions
• Aka “pure functions”, or functions without side-effects

• Programming with values
• Aka immutable data-structures

Referential Transparency

An expression is called referentially transparent if it can
be replaced with its corresponding value (and vice-
versa) without changing the program's behavior.

Referential Transparency

Referential Transparency

Referential Transparency

Functional Programming :: Example

1

2

3

Scala
• Static type system (really static J)
• Culture oriented towards FP
• Optimal language for FP
• Expression based
• “Union types”
• “Higher-kinded types”
• “Type-classes”
• Typelevel ecosystem

• Static type system (really static J)
• Culture oriented towards FP
• Optimal language for FP
• Expression based
• “Union types”
• “Higher-kinded types”
• “Type-classes”
• Typelevel ecosystem

Scala

Functional Programming + Scala

• Reduced defects rate [1] [2]

1. A Large Scale Study of Programming Languages and Code Quality in Github
2. To Type or Not to Type: Quantifying Detectable Bugs in JavaScript

https://web.cs.ucdavis.edu/~filkov/papers/lang_github.pdf
https://earlbarr.com/publications/typestudy.pdf

• Reduced defects rate
• Easier maintenance (tests, refactoring)

Functional Programming + Scala

• Reduced defects rate
• Easier maintenance (tests, refactoring)
• Local reasoning
• Mathematical rigor

Functional Programming + Scala

• Reduced defects rate
• Easier maintenance (tests, refactoring)
• Local reasoning
• Mathematical rigor
• We’re hiring great people
• We’re still learning
• It’s fun!

Functional Programming + Scala

Payment-processing

Destination Queue
- Transaction is

considered finished

Perform Processing
- Debit and credit

accounts

Input Queue
- Contains transactions
- Must delete from

queue when finished

Payment-processing - example
• Transactions are received as String
• Processor must

• parse
• check fraud-detection
• processes only during working hours
• delete from queue when finished
• be processed at-most-once

• Errors can occur and should be handled

Payment-processing - example
• Transactions are received as String
• Processor must

• parse
• check fraud-detection
• processes only during working hours
• delete from queue when finished
• be processed at-most-once

• Errors can occur and should be handled

Payment-processing code (1)

Payment-processing with Akka-Streams
• Each step is a Stream component

val source: SourceShape[TString] = ???
val parse: FlowShape[TString, TParsed] = ???
val fraudDetection: FanIn1FanOut2Shape[TParsed, TVerified, TFraudInfo] = ???

Payment-processing with Akka-Streams
• Each step is a Stream component

• Components are black-boxes with ports

val source: SourceShape[TString] = ???
val parse: FlowShape[TString, TParsed] = ???
val fraudDetection: FanIn1FanOut2Shape[TParsed, TVerified, TFraudInfo] = ???

Payment-processing with Akka-Streams
• Each step is a Stream component

• Components are black-boxes with ports

• Compose Components with GraphDSL
• Types of ports must match

val source: SourceShape[TString] = ???
val parse: FlowShape[TString, TParsed] = ???
val fraudDetection: FanIn1FanOut2Shape[TParsed, TVerified, TFraudInfo] = ???

source ~> parse ~> fraudDetection ~> …

Payment-processing with Akka-Streams
• Each step is a Stream component

• Components are black-boxes with ports

• Compose Components with GraphDSL
• Types of ports must match

• Messages passed asynchronously between components

val source: SourceShape[TString] = ???
val parse: FlowShape[TString, TParsed] = ???
val fraudDetection: FanIn1FanOut2Shape[TParsed, TVerified, TFraudInfo] = ???

source ~> parse ~> fraudDetection ~> …

Payment-processing code (2)

Payment-processing code (2)
M1 <~ delayedStoreOut

workHrs.o2 ~> del1 ~> delayedStoreIn
source ~> parse ~> M1 ~> fraudD; fraudD.o1 ~> workHrs; workHrs.o1 ~> process ~> MEnd ~> del2 ~> sink

fraudD.o2 ~> reject ~> MEnd

Payment-processing error-handling

• Assume each step can fail
• Differentiate

• Retryable errors (eg: external service unavailable)
• NonRetryable errors (eg: parsing exception)

M1 <~ delayedStoreOut
workHrs.o2 ~> del1 ~> delayedStoreIn

source ~> parse ~> M1 ~> fraudD; fraudD.o1 ~> workHrs; workHrs.o1 ~> process ~> MEnd ~> del2 ~> sink
fraudD.o2 ~> reject ~> MEnd

Payment-processing error-handling

• Assume each step can fail
• Differentiate

• Retryable errors (eg: external service unavailable)
• NonRetryable errors (eg: parsing exception)

M1 <~ delayedStoreOut
workHrs.o2 ~> del1 ~> delayedStoreIn

source ~> parse ~> M1 ~> fraudD; fraudD.o1 ~> workHrs; workHrs.o1 ~> process ~> MEnd ~> del2 ~> sink
fraudD.o2 ~> reject ~> MEnd

Payment-processing code (3)
M1 <~ delayedStoreOut

workHrs.o2 ~> del1 ~> delayedStoreIn
source ~> parse; parse.o1 ~> M1 ~> fraudD; fraudD.o1 ~> workHrs; workHrs.o1 ~> process; process.o1 ~> MEnd ~> del2 ~> sink

fraudD.o2 ~> reject; reject.o1 ~> MEnd
parse.oErr ~> MErr

fraudD.oErr ~> MErr
reject.oErr ~> MErr

process.oErr ~> MErr
delayedStoreErr ~> Merr

// Error Flow
MErr ~> logNotifyErrors ~> splitErr

splitErr.o1 ~> storeErr ~> MEnd
splitErr.o2 ~> errorSink

Payment-processing with Akka-Streams
• Main unit of abstraction = Flow component

• Contain pure FP code for business logic and expose ports
• Frequent tension: what to model with components vs FP code

Payment-processing with Akka-Streams
• Main unit of abstraction = Flow component

• Contain pure FP code for business logic and expose ports
• Frequent tension: what to model with components vs FP code

• Components can be arbitrarily complex, eg:
• Call HTTP Service/ database query
• Maintain FSM of transaction-state

Payment-processing with Akka-Streams
• Main unit of abstraction = Flow component

• Contain pure FP code for business logic and expose ports
• Frequent tension: what to model with components vs FP code

• Components can be arbitrarily complex, eg:
• Call HTTP Service/ database query
• Maintain FSM of transaction-state

• We allow transactions to be replayed if RetryableErrors appear
• eg: service for verifying Fraud is temporarily unavailable
• => components must be idempotent

Payment-processing with Akka-Streams
• Main unit of abstraction = Flow component

• Contain pure FP code for business logic and expose ports
• Frequent tension: what to model with components vs FP code

• Components can be arbitrarily complex, eg:
• Call HTTP Service/ database query
• Maintain FSM of transaction-state

• We allow transactions to be replayed if RetryableErrors appear
• eg: service for verifying Fraud is temporarily unavailable
• => components must be idempotent

• Built-in backpressure

Payment-processing with Akka-Streams
• Main unit of abstraction = Flow component

• Contain pure FP code for business logic and expose ports
• Frequent tension: what to model with components vs FP code

• Components can be arbitrarily complex, eg:
• Call HTTP Service/ database query
• Maintain FSM of transaction-state

• We allow transactions to be replayed if RetryableErrors appear
• eg: service for verifying Fraud is temporarily unavailable
• => components must be idempotent

• Built-in backpressure

• Scale horizontally with akka-cluster + sharding

Scala and FP – closing remarks

Example: Generate the Fibonacci numbers

Scala and FP – closing remarks
Example: Generate the Fibonacci numbers

Scala and FP – closing remarks

Example: Generate the Fibonacci numbers

Scala and FP - choosing an ecosystem

• What you can build with it
• Library/Platform Support
• How it fits in problem-domain
• Corectness guarantees
• Fun

Questions?

Alexandru Nedelcu
alexandru.nedelcu@ing.com

Mihai Simu
mihai-stelian.simu@ing.com

We’re hiring 😉

Nu uitați că avem și un concurs pregătit pentru antreprenorii presenți la eveniment. Am pregătit 10 pachete ING
FIX pentru 12 luni consecutive, pentru 10 antreprenori. Toți participanții eligibili la concurs vor primi gratuit,
automat, un pachet ING FIX, pentru o perioadă de până la două luni, pentru a testa serviciul ING.

Dacă vreți să vă înscrieți, mergeți la standul ING unde, la descrierea companiei veți găsi un tab cu numele
Concurs, unde este formularul de înscriere.

mailto:alexandru.nedelcu@ing.com
mailto:mihai-stelian.simu@ing.com

