
AKKA & MONIX
CONTROLLING POWER PLANTS

Alexandru Nedelcu

Software Developer @ eloquentix.com 
@alexelcu / alexn.org

http://eloquentix.com
https://twitter.com/alexelcu
http://alexn.org

CONTROLLING POWER PLANTS

MY WORK AT E.ON
▸ System for monitoring & controlling power plants

▸ Architecture based on micro-services

▸ Processing of signals in soft real-time

▸ State machines responding to command or state signals

▸ SLAs, resilience built-in

▸ Much like an orchestra playing a symphony

CONTROLLING POWER PLANTS

REAL-TIME
▸ “controls an environment by receiving data,

processing them, and returning the results
sufficiently quickly to affect the environment at
that time”

▸ Input is received continuously

▸ Implies Asynchrony (on the JVM)

CONTROLLING POWER PLANTS

ASYNCHRONY
▸ “the occurrence of events

independently of the main program
flow and ways to deal with such events”

▸ Implies Nondeterminism

▸ Implies Concurrency

CONTROLLING POWER PLANTS

ASYNCHRONY

Not something you
can fix later!

AKKA ACTORS

AKKA ACTORS

THE GOOD PARTS

▸Standard solution

▸Encapsulation

▸Concurrency guarantees

▸Message-passing over address spaces

▸Supervision

AKKA ACTORS

THE BAD PARTS

▸No best practices

▸Too flexible (e.g. Any => Unit)

▸Bidirectional comms => cycles

▸Concurrency problems in communication

▸Stateful & Async 
(worse than the worst of OOP)

AKKA ACTORS

THE BAD PARTS

All problems of Actors are problems of
micro-services!

AKKA ACTORS

ANTI-PATTERN: INTERNAL MESSAGES

class SomeActor extends Actor { 
 
 private val scheduler = context.system.scheduler 
 .schedule(3.seconds, 3.seconds, self, Tick) 
 
 def receive = { 
 case Tick => doSomething() 
 } 
}

AKKA ACTORS

ANTI-PATTERN: CAPTURING INTERNALS
class SomeActor extends Actor { 
 
 private val readings =  
 mutable.ListBuffer.empty[Double] 
 
 def receive = { 
 case Tick => 
 for (r <- fetchReading()) { 
 // Oops, multi-threading issues! 
 readings += r 
 } 
 } 
}

AKKA ACTORS

class SomeActor extends Actor { 
 def fetchReading(): Future[Double] = ??? 
 private val readings = ListBuffer.empty[Double]  
 
 def receive = { 
 case Tick => 
 fetchReading pipeTo self 
 context.become(waitForReading) 
 } 
 
 def waitForReading: Receive = {
 case Tick => () // ignore 
 case reading: Double => 
 readings += reading 
 context.become(receive) 
 } 
}

ASYNCHRONOUS BLOCKING

AKKA ACTORS

class SomeActor extends Actor { 
 def fetchReading(): Future[Double] = ??? 
 def receive = active(Queue.empty[Double])  
 
 def active(readings: Queue[Double]): Receive = { 
 case Tick => 
 fetchReading() pipeTo self 
 context become waitForReading(readings) 
 } 
 
 def waitForReading(readings: Queue[Double]): Receive = { 
 case Tick => () // ignore 
 case r: Double => 
 context become active(readings.enqueue(r)) 
 } 
}

EVOLUTIONS & CONTEXT.BECOME

AKKA ACTORS

case class Update(r: Double)  
 
class SomeActor extends Actor { 
 def receive = active(Queue.empty)  
 
 def active(readings: Queue[Double]): Receive = { 
 case Update(r) =>  
 context become active(readings.enqueue(r))  
 } 
}

NO I/O LOGIC IN ACTORS

AKKA ACTORS

▸All input must be explicit

▸Including input provided by  
The World

▸Or else you introduce  
Nondeterminism

▸No DateTime.now

EXPLICIT TIME 1/2

AKKA ACTORS

case class Update(r: Double, now: DateTime) 
 
class SomeActor extends Actor { 
 def receive = { 
 case Update(r,now) => 
 context become active(empty, now) 
 } 
 
 def active(state: Queue[Double], ts: DateTime): Receive = { 
 case Update(r, now) => 
 val next = active(state enqueue r, now) 
 context become next 
 } 
}

EXPLICIT TIME 2/2

AKKA ACTORS

case class Update(reading: Double)
 
case class StateMachine(readings: Queue[Double]) { 
 def evolve(r: Double): StateMachine =
 copy(readings.enqueue(r)) 
}  
 
class StateMachineActor extends Actor { 
 def receive = active(StateMachine(Queue.empty))  
 
 def active(state: StateMachine): Receive = { 
 case Update(r) => 
 context become active(state update r) 
 } 
}

PURELY FUNCTIONAL STATE (1/5)

AKKA ACTORS

PURELY FUNCTIONAL STATE (2/5)

type Evolve[S,U] = 
 (S,U) => S  
 
type Produce[S,A] = 
 S => (A,S)

AKKA ACTORS

PURELY FUNCTIONAL STATE (3/5)
sealed trait Output 
 
case class StatusUpdate 
 (assetId: Long, powerOutput: Double)  
 extends Output
 
case class Transition 
 (assetId: Long, oldState: State, newState: State) 
 extends Output
 
case class Dispatch(assetId: Long, value: Double)  
 extends Output
 
case class Alert(assetId: Long, error: String)  
 extends Output

AKKA ACTORS

PURELY FUNCTIONAL STATE (4/5)

case class StateMachine( 
 state: State,  
 output: Queue[Output]) { 
  
 def evolve(input: Input): StateMachine = ??? 
 
 def produce: (Seq[Output], StateMachine) = 
 (output, copy(output=Queue.empty)) 
}

AKKA ACTORS

PURELY FUNCTIONAL STATE (5/5)
class StateMachineActor(channel: SyncObserver[Output])  
 extends Actor { 
  
 def receive = active(StateMachine.initial)  
 
 def active(fsm: StateMachine): Receive = { 
 case input: Input => 
 context become active(fsm.evolve(input))
 
 case Produce => 
 val (output, next) = fsm.produce 
 for (event <- output) channel.onNext(event) 
 context become active(next) 
 } 
}

ARCHITECTURE

ARCHITECTURE

HIGH LEVEL OVERVIEW

STATE MACHINE 1INPUT SIGNALS 1

STATE MACHINE 2INPUT SIGNALS 2

OUTPUT
QUEUE

TIMESERIES 
PERSISTENCE

ALERTS 
SIGNALING SCADASUPERVISOR

ARCHITECTURE

DECOUPLING PHILOSOPHY
▸Mocks & Stubs => tight coupling

▸DI techniques are for hiding junk 
(Guice, Cake Pattern, etc.)

▸Pain Driven Development: 
Don’t hide the junk, pain is good :-)

ARCHITECTURE

BACK-PRESSURE (1/3)

▸Q: What if the Producer is too fast?

▸Q: What if Networking goes down?

▸Q: What if you’re left without CPU?

▸Problem: Any unlimited queue can blow up!

ARCHITECTURE

BEST PRACTICE: BACK-PRESSURE (2/3)

In a distributed system, shit happens ;-)

ARCHITECTURE

BEST PRACTICE: BACK-PRESSURE (3/3)

▸A: Pause the producer

▸A: Or have an overflow strategy

▸ 1. E.g. drop messages on the floor

▸ 2. Be redundant

MONIX

MONIX

WHAT IS MONIX?
▸ Scala / Scala.js library

▸ For composing asynchronous programs

▸ Exposes Observable & Task

▸ Modular design

▸ Typelevel Incubator

▸ 2.0-RC2

▸ See: monix.io

http://monix.io

MONIX

MONIX SUB-PROJECTS
▸ Minitest: Scala/Scala.js testing

▸ Sincron: Atomic references

▸ monix-execution: Scheduler, Cancelable

▸ monix-eval: Task, Coeval

▸ monix-reactive: Observable

▸ monix-cats, monix-scalaz: Work in progress!

https://github.com/monixio/minitest
https://sincron.org

MONIX
OBSERVABLE

A CONSTRAINT AT ONE LEVEL
GIVES US FREEDOM AND
POWER AT A HIGHER LEVEL.

Rúnar Bjarnason

MONIX OBSERVABLE

MONIX OBSERVABLE

OBSERVABLE

▸Unidirectional streaming of events

▸Asynchronous

▸One producer => one/many consumers

▸Handles back-pressure

▸Composable

MONIX OBSERVABLE

OBSERVABLE

Single Multiple

Synchronous () => A Iterable[A]

Asynchronous Future[A] / Task[A] Observable[A]

MONIX OBSERVABLE

OBSERVABLE: SAMPLE

Observable.fromIterable(0 until 1000)  
 .filter(_ % 2 == 0)  
 .map(_ * 2)  
 .flatMap(x => Observable.fromIterable(Seq(x,x)))

MONIX OBSERVABLE

OBSERVABLE: SUBSCRIBE (1/2)

import monix.execution.Scheduler 
import Scheduler.Implicits.global

val cancelable = observable.subscribe

MONIX OBSERVABLE

OBSERVABLE: SUBSCRIBE (2/2)

val cancelable = observable.subscribe( 
 new Observer[Int] { 
 def onNext(elem: Int): Future[Ack] = { 
 println(elem) 
 Continue 
 } 
 
 def onComplete(): Unit = () 
 def onError(ex: Throwable): Unit =  
 global.reportFailure(ex) 
 })

MONIX OBSERVABLE

OBSERVABLE: BUILDERS (1/4)

Observable.now("Hello!")  
 
Observable.evalAlways { println("effect"); "Hello!" }  
 
Observable.evalOnce { println("effect"); "Hello!" }  
 
Observable.defer(Observable.now("Hello!"))  
 
Observable.fork(Observable.evalAlways { "Hello!" }) 
 
Observable.fromFuture(future)

MONIX OBSERVABLE

OBSERVABLE: BUILDERS (2/4)

Observable.fromIterable(0 to 1000)  
 
Observable.fromIterator((0 to 1000).iterator) 
 
Observable.fromReactivePublisher(publisher) 
 
Observable.fromStateAction(pseudoRandom)(1023)
 
Observable.repeatEval(Random.nextInt())

MONIX OBSERVABLE

OBSERVABLE: BUILDERS (3/4)

Observable.repeat(1,2,3)  
 
Observable.interval(1.second) 
 
Observable.intervalAtFixedRate(1.second) 
 
Observable.intervalWithFixedDelay(1.second)

MONIX OBSERVABLE

OBSERVABLE: BUILDERS (4/4)

// Safe builder for cold observable 
Observable.create[Int](Unbounded) { subscriber => 
 subscriber.onNext(1)  
 subscriber.onNext(2)  
 subscriber.onNext(3)  
 subscriber.onComplete()
 
 Cancelable.empty 
}

HOT OBSERVABLES

MONIX OBSERVABLE

HOT OBSERVABLE 1/2

val subject = ConcurrentSubject
 .publish[Int](Unbounded)
 
subject.dump("O").subscribe() 
subject.onNext(1)  
subject.onNext(2)

MONIX OBSERVABLE

HOT OBSERVABLE 2/2

val coldObservable = Observable.interval(1.second) 
val connectable = coldObservable.publish 
 
val s1 = connectable.dump("S1").subscribe() 
val s2 = connectable.dump("S2").subscribe() 
val s3 = connectable.dump("S3").subscribe() 
 
val cancelable = connectable.connect()

MONIX OBSERVABLE

POLLING

Observable.interval(1.second).concatMap { _ => 
 Observable.fromFuture(WS.url("http://some-url.com").get) 
}

MONIX OBSERVABLE

POLLING
val request = Task.defer {  
 Task.fromFuture(WS.url(“...").get)
 .delayExecution(1.second) 
}  
 
Observable.repeat(0).flatMap { _ => 
 Observable.fromTask(request)  
}

MONIX OBSERVABLE

SCAN: FILTERING DATA 1/2
case class SimpleMovingAverage( 
 points: Queue[Double],  
 windowSize: Int) { 
 
 lazy val value: Double =  
 if (points.isEmpty) 0.0 
 else points.sum / points.length 
 
 def evolve(point: Double) = { 
 val newQueue = points.enqueue(points) 
 copy(newQueue.takeRight(windowSize)) 
 } 
}

MONIX OBSERVABLE

SCAN: FILTERING DATA 2/2

val source: Observable[Double] = ??? 
 
val init = SimpleMovingAverage(
 Queue.empty, windowLength = 10)
 
val scanned: Observable[SimpleMovingAverage] = 
 source.scan(init)((state, e) => state.evolve(e)) 
 
val mapped: Observable[Double] =
 scanned.map(_.value)

STATE MACHINES
W00T!

TEXT

TIMEOUT GATE (1/4)

▸ Purpose is to filter out
sporadic errors

▸ On error, transitions to
Wait but with a timeout

MONIX OBSERVABLE

TIMEOUT GATE (2/4)

sealed trait State[+T]  
 
case object Init extends State[Nothing] 
 
case class Wait[+T](value: T, expiresAtTS: Long)  
 extends State[T]  
 
case class Process[+T](value: T)  
 extends State[T]

MONIX OBSERVABLE

TIMEOUT GATE (3/4)

case class TimeoutGate[E,A]  
 (timeout: FiniteDuration, timestamp: Either[E,A] => Long) { 
 
 type S = State[Either[E,A]]  
 def init: S = Init 
  
 def evolve(acc: S, elem: Either[E,A]): S = ??? 
}

MONIX OBSERVABLE

TIMEOUT GATE (4/4)

val gate = TimeoutGate[E,A](1.minute, ???)  
 
observable.scan(gate.init)(gate.evolve) 
 .collect { case Process(signal) => signal }

THROTTLING

MONIX OBSERVABLE

THROTTLING

source
 .distinctUntilChanged 
 .throttleLast(1.second) 
 .echoRepeated(5.seconds)

MONIX OBSERVABLE

THROTTLING

source.groupBy(_.assetId).mergeMap { gr => 
 gr.distinctUntilChanged 
 .throttleLast(1.second) 
 .echoRepeated(5.seconds) 
}

MONIX OBSERVABLE

THROTTLING

source.debounce(4.seconds) 
 
source.switchMap { x =>  
 Observable.now(x).delaySubscription(4.seconds)
}  
 
source.debounceRepeated(4.seconds) 
 
source.switchMap { x => 
 Observable.intervalAtFixedRate(4.seconds) 
 .map(_ => x) 
}

BACK-PRESSURE

MONIX OBSERVABLE

BACK-PRESSURE

source.whileBusyDropEvents

MONIX OBSERVABLE

BACK-PRESSURE

source.whileBusyBuffer(
 OverflowStrategy.DropOld(bufferSize = 1024))

MONIX OBSERVABLE

BACK-PRESSURE

val source: Observable[A] = ??? 
 
val buffered: Observable[List[A]] =  
 source.bufferIntrospective(maxSize = 1024)

WHAT’S THE
POINT?

MONIX OBSERVABLE

MONIX OBSERVABLE

▸Decoupling (Observer pattern, ftw)

▸Handles the non-determinism

▸Back-pressure provided for free

▸Can be used in combination with
Actors, Task, Future, whatever…

MONIX OBSERVABLE

CATS INTEGRATION CHALLENGES

▸ Monad, MonadError, MonadFilter,
MonadCombine, CoflatMap, Applicative

▸ Foldable, Traverse: not implementable 
(need async versions, foldRight not possible)

▸ Missing, potentially useful type-classes, e.g.
Zippable, Scannable, Evaluable

MONIX.IO

QUESTIONS?

http://monix.io

